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Wave theories, a specialized class of field theories, are defined and treated. The inhomogeneous wave
equation with point sources in an arbitrary state of motion, satisfied by the field components of a wave
theory, is solved without reference to retarded time. The resulting representation is in the form of a
Lagrange series evaluated at the present time. As such, it constitutes a relativistically correct instantane-
ous action-at-a-distance formulation of field solutions to wave equations with point sources. Implica-
tions of this formulation with respect to wave-particle dualism are addressed. Electromagnetic theory is
recast using the Lagrange series formalism. Present-time electromagnetic-field structures are developed
and shown to be equivalent to classical retarded-time formulations. Alternative structures for the elec-
tromagnetic fields and potentials are introduced and validated. In the context of electromagnetic theory,
advanced potentials are also discussed, as are the possibility and necessity of experimentally determining
the phenomenological mix of advanced and retarded electromagnetic potentials. Ordinary causality is
examined and called into question in light of the material presented, as is the mathematical structure of
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the electromagnetic and other wave-theoretic potentials.

PACS number(s): 41.20.—q, 03.50.De

I. INTRODUCTION

This paper presents the mathematical foundations of
action-at-a-distance field theory. It sets forth some of the
methods whereby certain field theories may be replaced
by equivalent action-at-a-distance theories, thereby facili-
tating the elimination of the field portion of particle-to-
particle interaction processes. It does this rigorously and
completely up to the representation of fields in terms of
source particle motion expressed in the present time (as
opposed to retarded- or advanced-time representations).
It is incomplete, however, in that it does not address the
conversion of specific fields into forces. Therefore the re-
placement of field governing partial differential equations
with ordinary differential equations governing the motion
of interacting particles—one of the principal aims of this
effort—must be separately considered.

Because of the fundamental nature of this undertaking,
emphasis has been placed upon mathematical rigor, and
proofs of all claims have been presented in full in the
body of this paper rather than in the Appendix. Admit-
tedly, this makes the reading somewhat difficult. Howev-
er, in presenting proofs, it is one of the aims of this paper
to display some of the techniques employed and conven-
tions adopted, in addition to the proofs themselves. This
is deemed an essential part of treating the material if fur-
ther development of the subject matter is to take place.

In accord with Webster [1], this paper holds that “It is
the lofty aim of mathematical or theoretical physics to
describe the universe in the most accurate manner. This
manner must be by means of mathematics.” Thus stress-
ing the mathematics, little in the way of physical applica-
tion will be found in this paper. Rather, attention has
been focused on the derivation and validation of basic
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formulas, with considerable emphasis placed upon the de-
velopment of the electromagnetic field and potentials.
What is of physical significance is to be found in the
remainder of the Introduction and in the section on ad-
vanced potentials—and that material will be found to be
of a rather fundamental nature.

Except for a reference to Rouché’s theorem in Sec. III,
this paper, with all its proofs, is self-contained. There are
two reasons for this. First, this material opens an unex-
plored area of investigation in theoretical physics. Fur-
ther investigation will be greatly facilitated, therefore, if
all the necessary material can be located in one place.
Second, while Lagrange series expansions, with which
this paper deals, are known, they have not before been
applied to wave theories of fields in general. Therefore
further research in this area may benefit from the details
of Lagrange series manipulation presented herein, most
of which have not appeared elsewhere, with one excep-
tion which requires some explanation: the proof of the
inversion theorem presented in Sec. III is offered in
full—though it is already known—since some of its de-
tail is used later in a consideration of Lagrange series
convergence and multiple roots, and in the Lagrange
series development of the electromagnetic potentials.
The proof does not depend, however, upon Teixeira’s ex-
tended form of Blirmann’s theorem [2], but is specialized
to the field-theoretic application at hand; namely, the el-
imination of explicit retarded- and advanced-time refer-
ences from certain field representations.

Since the thrust of this paper is directed toward an
action-at-a-distance representation of particle-to-particle
interactions, some background material on the action-at-
a-distance concept will be offered next, followed by a
brief rationale for this paper’s undertaking, and then by a
formal introduction to the material of the paper.

4008 ©1993 The American Physical Society



48 INSTANTANEOUS ACTION-AT-A-DISTANCE . ..

A. Background

Action at a distance is a concept which refers to the
ability of one object to exert force on another without
direct contact of the objects. It achieved high visibility
after the 1687 publication of Newton’s Principia wherein
planetary motion was satisfactorily described by
Newton’s action-at-a-distance representation of the law
of gravity. The mechanism of force transmission was not
understood at that time, however. After the introduction
of the continuous field concept by Faraday (1791-1867)
and its later extension to the laws of electromagnetism by
Maxwell (1831-1879), the notion of propagating fields
came into clear view and gained widespread acceptance.
Newtonian action-at-a-distance gravity itself then yield-
ed, by reason of its noncovariance under special relativi-
ty, and became a propagating wave theory in the non-
Euclidean forge of general relativity (1915). The original
Newtonian corpuscular theory of light that fell into dis-
favor after the advent of Maxwellian theory was revived
with the evidence of the photoelectric effect and its satis-
factory interpretation by Einstein in 1905. The resulting
dual view of light as both a corpuscular and continuous
wave phenomenon led to the extension of these features
to matter by deBroglie in 1924, with the consequence that
particle-based quantum mechanics was able to emerge
under the efforts of Schrodinger, Heisenberg, and others.
In essence, wave-particle duality became—and still is—a
universality, an article of faith of such strength that all
interaction mechanisms were assumed to have an under-
lying exchange particle or field quantum, localized in
physical extent, yet guided by or generated from fields
which propagate at the speed of light. (This faith has, as
is well known, even been extended to gravity with the in-
troduction of the graviton exchange particle, whose ex-
istence has not yet been established experimentally.)

All of these observations tend to not only strongly dis-
favor the notion of instantaneous action at a distance, but
virtually annihilate it, with its implicit lack of a postulat-
ed mechanism for the transmission of interaction effects.
Since instantaneous action at a distance is a concept
which refers to the immediate or present-time (“now”)
exchange of forces between objects, there can be no time
delay involved, and therefore no transit time for any
force delivering intermediary, such as a wave or particle.
If a particle, wave, or corpuscular wave particle were
transmitted instantaneously between two objects, it
would appear to violate virtually all accepted laws of
physics, not the least of which is the velocity bound
presented by the speed of light. Thus, with the wave-
particle dualism appearing so firmly entrenched both
theoretically and experimentally, any would-be instan-
taneous action-at-a-distance theory would seem to be
utterly doomed to failure at the outset.

Despite these contrary indications, this paper will
show that, for certain classes of field theories, an instan-
taneous action-at-a-distance representation of the physi-
cal fields is not only always possible, but also is complete-
ly equivalent to the customary speed-of-light-limited
retarded-time representation of fields over appropriately
qualified regions of space and time. This will be achieved
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by making implicit the explicit delayed (retarded-time)
effect; that is, by dispensing with direct analytical refer-
ences to propagating effects. It will be shown, further-
more, that this can be accomplished with the very wave
equations which are so highly suggestive of propagating
phenomena, and done without altering their substantive
content. This present paper will develop and validate the
procedure for doing this and will also apply that pro-
cedure to the important subject of electromagnetism.

To make clear what is to be accomplished and to avoid
confusion as to what is meant by action at a distance,
consider the paradigmatic action-at-a-distance field
defined by Newton’s law of gravity in the form of
Poisson’s equation.

Vip=47Gp(t) , (1.1)

whose solution is

¢=—Gfp(—t)dv ) (1.2)
r

What makes the field given by Eq. (1.2) an action-at-a-
distance representation? Simply, it is the fact that p is an
explicit function of the present time #; that is, upon evalu-
ation of the integral over all space, the resulting expres-
sion is a function of the field point coordinates (via r) and,
independently, the present time ¢. For a given time ¢,
then, the field ¢ is known throughout all space “instan-
taneously.” The present (time ¢) state of the mass distri-
bution p determines ¢ everywhere ‘“now.”

What difference arises when the Laplacian operator of
Eq. (1.1) is replaced with the d’Alembertian operator, so
that

2
vig— L ¢ _4rGoir

(1.3)
c? ar?
and a wave equation is obtained? The solution
o=—G [ B g (1.4)
r

is in a form in which p is an implicit function of the
present time ¢ via the retarded-time variable t', given by

t'=t—r/c. (1.5)

To evaluate the integral, it is clear that a knowledge of
p at the present time is not enough to determine ¢. One
must consider the source function p at past times ¢’ such
that the source influence at time ¢’ propagates at speed ¢
over distance r to arrive at the field point at time
t'+r/c=t; that is, “now.” This interpretation of what
must be done to evaluate the integral of Eq. (1.4) is, it
must be emphasized, an interpretation, albeit a quite natu-
ral one. Implicit in the interpretive procedure is the no-
tion of propagating effects and the existence of underly-
ing wavelike phenomena propagating at speed c. None of
these interpretations or conclusions are to be disputed by
this present paper. They are, in fact, quite “correct.”

Consider, on the other hand, what it means if it were
possible to write

(1.6)
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that is, if from the function p(t’), computable only at re-
tarded times t’, it was possible to construct a new func-
tion p’(?), equivalent to p(t'), but computable everywhere
at present time ¢. For this situation Eq. (1.4) would be-

come '(t)
¢=—Gfﬂ——r dv (1.7

and would fall under the paradigmatic solution offered by
Eq. (1.2)—with p(¢) becoming p'(¢), thereby allowing Eq.
(1.7) to also be classified as an action-at-a-distance repre-
sentation of the solution to Eq. (1.3). Since the field solu-
tions given by Egs. (1.4) and (1.7) are the same, by reason
of Eq. (1.6), it follows that either a speed-of-light-limited
retarded-time interpretation or an instantaneous action-
at-a-distance interpretation of the field representation
may be invoked, depending only upon interpretive con-
venience.

With the above clarifying remarks in place, the dual in-
terpretation of solutions to the wave equation as either
propagating waves or action-at-a-distance effects is seen
to be possible if a p’ satisfying Eq. (1.6) exists. Does such
a p’ exist? For the case of Eq. (1.3) the answer is yes.
The Appendix to this paper displays the structure of p’
for two cases: one in which p is a continuous source
function and one in which p represents a particulate
(singular) point source. In both cases, it will be seen,
infinite series are involved in the construction of both p’
and ¢. Since the issue of series convergence is of consid-
erable importance in establishing a well-defined p’ or ¢,
much of this paper develops an approach which will al-
low this issue to be addressed for functional expansions
similar to those of ¢, while presenting several alternative
methods for generating those expansions. Throughout,
the emphasis will be placed upon particulate sources,
however, since this case is the more fundamental, though
it is more difficult to treat.

Given the validity of the dual representation for cer-
tain fields as propagating wave or action-at-a-distance
constructs, it is clear that the latter construct appears to
eliminate the particle aspect of the wave-particle dualism,
since instantaneous effects are naturally devoid of propa-
gational referents or constructs—inclusive of particles or
particlelike phenomenona. Furthermore, as will be seen
in the body of this paper, field effects are so closely tied to
their source particle kinematics that even wavelike con-
structs become obscured. That is, the wavelike solutions
of the field equations also lose their clear identity. There-
fore the concept of a field quantum itself appears vitiated.
Such appearances are illusory, however, for it may be
reasonably argued that if an action-at-a-distance represen-
tation of fields is possible, the underlying field theory can-
not then admit of a field quantum, and the underlying
field equations cannot then be considered wholly correct.
Evidence of field quantum phenomena is so extensive that
this thesis may be held demonstrably correct, until shown
to be otherwise. Classical electromagnetic-field theory,
for example, falls into the class of wave theories con-
sidered in this paper. An action-at-a-distance representa-
tion for its fields and potentials is possible, as will be
shown. The conclusion that it admits of no field quantum
(the photon) is consistent with the experimental facts, for

the photoelectric and other effects cannot be explained
based upon Maxwell’s classical equations alone. These
difficulties are well known and attempts at this resolution
have guided the formulation of acceptable particle-based
quantum field theories and the continuous-field-based in-
teraction field theories of modern physics.

B. Why instantaneous action at a distance?

Since one of the hallmarks of a canonically correct field
theory is the emergence of field quanta from its structure,
and since the convertible (to action-at-a-distance repre-
sentation) wave theories considered in this paper will not
intrinsically possess this necessary structure, why then
follow this course of development?

On a practical (engineering) level, the present-time rep-
resentation of fields can be extremely convenient, since
retarded-time representations, while formally correct,
only present another problem to be solved (for the retard-
ed time) before computational use can be made of the
field expressions. Theoretically, in those cases where de-
tailed particle structure is not a constraining issue, a
present-time representation of field structures presents a
uniform (present-time) basis for analytical investigations.
In any circumstance where charged particles are known
to preserve their structural integrity (i.e., where creation
or annihilation events do not occur), an action-at-a-
distance representation of particle generated fields may
prove beneficial. Wave theories of matter and field quan-
ta may benefit as well, however, from such a representa-
tion.

Wave theories whose fields obey the inhomogeneous
wave equation have two common forms of source repre-
sentation: macroscopic continuum sources and particle
sources. The former are a convenient abstraction for re-
ducing wave theories to practice. The latter, with which
this paper shall deal, more closely underlie actual physi-
cal realities, as has been amply demonstrated in recent
times. When particulate sources are invoked in any wave
theory, however, two difficulties arise. First, the detailed
structure of “particles” is not known, so that developing
a continuum (though localized) source function for them
is obstructed by lack of knowledge of their physical ex-
tent and intrinsic characteristics. The best that can be
done, in most circumstances, is to adopt the abstraction
of a “point” particle, with its well-known attendant field
singularities. Second, even with the assumption of a
point particle, solving the underlying field equations with
singular point sources results in “indirect” solutions, ex-
pressed in terms of retarded (or advanced) times.

To eliminate the indirectness presented by retarded or
advanced times, an instantaneous action-at-a-distance
theory is required, whereby these times are uniformly and
consistently evaluated “now;” that is, instantaneously in
the present time of some observer. Doing so, despite the
loss of field quantization capability, would allow for the
development of the mechanics and dynamics of instan-
taneously interactive (particle-to-particle) systems. In
turn, this would allow for the development of system La-
grangians and Hamiltonians which form the mainstay of
much of modern particle physics—in the development of
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quantum field theories, for example. Instantaneous
action-at-a-distance theory would also allow for a more
uniform and orderly search for and examination of sys-
tem invariants—without the complications attendant
upon retarded- and advanced-time representations.

It is in the area of quantum field theory development
that one comes full circle to the first problem mentioned
above, for it has been in the quantum-mechanical repre-
sentation of system Hamiltonians that both particle
structures and field quanta have come to be (at least par-
tially) understood, with respect to both extent and inter-
nal characteristics. Thus it is that instantaneous action-
at-a-distance theory may come to be of some importance
in extending the knowledge base. With this preface to
the material, wave and instantaneous action-at-a-distance
theories will now be formally described.

C. Formal developments and outline of paper

Wave theories are abstract representations of propaga-
ting wave phenomena. The representation is usually
mathematical and generally takes the form of partial
differential equations relating abstract fields. Abstract
fields are space-time-dependent functions whose struc-
tures are so constrained by the governing differential
equations as to manifest some (or perhaps all) of the
salient features of the underlying wavelike phenomenon.
Whether one or more field components are involved in a
field description of a wave phenomenon, each component
satisfies an inhomogeneous wave equation which deter-
mines the field-to-source relationship; and it is this prop-
erty of the field components which will be used to charac-
terize a wave theory for the purposes of this present pa-
per.

If the sources are abstracted to point particles, the
source term of the inhomogeneous wave equation con-
tains a Dirac 8 function as a factor, and the most general
wave equation governing a source-to-field relationship is
of the type given by Eq. (1.8). It is with such wave equa-
tions that this paper will exclusively deal; that is, with
equations of the point source type.

The solution of the inhomogeneous wave equation,

1 2

0=V 2¢——;§—%= —4ms(1)8(rp—1,(2)),
v° ot

in terms of retarded-time formulations is well known [3].

The field ¢, due to a particle (p) of source strength s(¢),

is given by

(1.8)

s(t'")
|rF—rp(t’)|-|—(1/v )i, (') [r,(t')—rf]

blrp,t)= (1.9)

at the (assumed) fixed field point rp. t' is the retarded
time, determined by solving the retarded-time equation
1
t'=t——|rp—r,(t')| . (1.10)
Llep—r, ()
Given that a wave theory is restricted to a considera-
tion of point particle sources, so that its field satisfy Eq.

(1.8), it then becomes possible to convert it into an instan-
taneous action-at-a-distance theory. An instantaneous

action-at-a-distance theory is one whose fields (the same
as for the underlying wave theory) satisfy Eq. (1.8), but
whose solutions are given entirely in terms of the present
(source particle) time, thereby effecting an instantaneous
(present-time) interaction between source and field (obser-
vation) points.

It follows that any wave theory with particle sources
may be translated into a mathematically equivalent in-
stantaneous action-at-a-distance theory by the simple
mechanism of solving Eq. (1.10) for ¢’ and then substitut-
ing the solution into Eq. (1.9). The resulting field solution
will then be given strictly in terms of the present time ¢
and the impression of instantaneity (i.e., instantaneous
action at a distance) will have been effected. (It is to be
noted at this point that the appellations “present time”
and ‘“‘instantaneous action at a distance” may be used in-
terchangeably.)

The difficulty involved with executing the above pro-
cedure is that Eq. (1.10) cannot be solved for ¢’ exactly,
except in a relatively few cases, because of its inherently
transcendental nature. Even in those relatively few cases
where it can be solved exactly, the task of reducing the
right member of Eq. (1.9) to a manageable form often be-
comes onerous. It is desirable, therefore, to present a
means for not only solving Eq. (1.10) in a general way,
but also for reducing the right member of Eq. (1.9) to a
convenient and manageable form. Both of these tasks
will be addressed in this paper, with relatively simple re-
strictions on the function r, defined by Eq. (1.11a) below.

Besides accomplishing the above tasks, the present pa-
per will also apply the results to the important subject of
electromagnetism whose defining fields and potentials,
under a Lorentz gauge, satisfy inhomogeneous wave
equations. (In electromagnetism, the retarded potential is
a four-vector, generally referred to as the Liénard-
Wiechert potentials.) It should be remembered, however,
that although electromagnetic applications are stressed in
this paper, the results will apply equally well to any field
phenomenon which is governed by an inhomogeneous
wave equation of the type presented in Eq. (1.8); this is,
with particle sources. To emphasize this point, the
retarded-time solution to Eq. (1.8) will be presented at
this time, in terms of the mathematical formalism intro-
duced in this paper. Itis

d(rp,t)=D, (s(t)r™ 1), (1.11)
with

r=lrp—r,(1)] (1.11a)
and

p, ={=D" d" (1.11b)

b
" v™ml dt™

with summation on the index m from O to « being im-
plied in Eq. (1.11). The formal derivation of this equation
is contained in the sections that follow.

When Egs. (1.11) are examined, it is to be noted that
they are expressed entirely in terms of the present time
(or particle time) ¢t. That is, they make no reference to
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the retarded time ¢'. Essentially then, the formalism to
be introduced herein removes retarded-time references
from field computations and expresses the fields directly
in terms of the present (particle) time. Therefore this for-
malism will be found to constitute an adequate basis for
an instantaneous action-at-a-distance theory of particle-
to-particle interactions.

Only the electromagnetic fields generated from the ar-
bitrary motion of charged particles moving in vacuo will
be treated in this paper. Restricting particles to a vacu-
um is tantamount to restricting their speed to the signal
propagation speed ¢, so that shock effects, such as
Cherenkov radiation, must be developed as an applica-
tion of the following material, and should not be con-
sidered an intrinsic part of it. (With no loss of generality,
the assignment v =c, the vacuum speed of light, will be
maintained throughout the rest of this paper.)

A treatment of particle dynamics is omitted from the
material that follows. This omission is compatible with
the field view of particle-to-particle interactions. In this
view, fields (or field quanta) are seen as being generated
from their particle sources, and then the fields (or field
quanta) so generated are perceived as interacting with
some target particle. This two-part representation of par-
ticle interactions is didactically convenient, and has been
adopted in this paper to reduce the subject material into a
manageable presentation. The present material, it has
proved, is readily expoundable if the target particle reac-
tion to (or interaction with) the source fields is excluded.
Some of the complexities that can result when a total
particle-to-particle interaction theory is undertaken are
ably described by Whittaker [4] in his compendious treat-
ment of the history of electromagnetism. Sommerfeld’s
electrodynamics [5] contains a more abbreviated (though
more technically formal) discussion of some of those
same complexities. The difficulties, of course, are not re-
stricted to electromagnetic-field theory, but apply almost
universally, given the ubiquitousness of Eq. (1.8). They
will be avoided in this present treatment, however, which
may then be considered an effort to exactly solve Eq. (1.8)
in an instantaneous action-at-a-distance or present- (par-
ticle) time format, wherein reference to retarded time is
eliminated from the field solution.

As already mentioned, the key to following this agenda
rests with the solution of the classical retarded-time equa-
tion. This equation is derived in the next section, along
with its heuristic solution in terms of Lagrange series. In
Sec. 111, a formal solution is provided, with extensions.
In Sec. IV, the classical Liénard-Wiechert potentials are
presented in present-time format, with all reference to re-
tarded times removed. The electromagnetic fields are
also developed in present-time format and are shown to
be equivalent to the classical retarded-time representation
of the fields. Section V presents some examples which
show that the new formulation reduces to familiar results
for the examples chosen and validates the relativistic
correctness of the formulations developed for the special
(but important) case of uniform source particle motion.
In Sec. VI new representations of the electromagnetic
fields and potentials, based upon the Lagrange series for-
malism, are developed. Advanced potentials are intro-
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duced and discussed in Sec. VII. Their significance to
field theories is addressed and the possibility is raised of
performing experiments to determine if advanced (elec-
tromagnetic) potentials have phenomenological reality.
Equations necessary to undertake such experimentation
are presented, but not reduced to experimental detail.

II. THE RETARDED-TIME EQUATION

Suppose a charged particle to be at position r,(¢) at
time ¢. At some arbitrary but fixed field point rg, elec-
tromagnetic effects experienced at time f, due to the
charge, were generated at some earlier time, [¢]. These
effects propagated a distance IrF—rp([t])| to the field
point and took a time IrF—rP([t])| /c to get there. This
time must be the same as ¢t —[¢], the time elapsed from
the retarded time to time ¢, at which time the fields are
observed. Therefore

[t]=t—r([t])/c, (2.1)
where

r(leD=lrg—r,([])] . (2.2)

Equation (2.1) is the retarded-time equation which
must be solved if any headway is to be made in an instan-
taneous action-at-a-distance formulation of electro-
dynamics and other field theories. A clue as to how the
above equation may be solved is obtained by assuming

a,(t)

n .

[t]=t+§

n=1

(2.3)

Equation (2.1), with the substitution suggested by Eq.
(2.3), becomes

a,(t) a,(t)

. (2.4)

t+ 3

n=1 C

Ms

n—1 =

1€ "

1

n

A Taylor series expansion of the right member about ¢, in
powers of the summed expression, and an equating of the
coefficients of like powers of ¢ results in

a,=—r(t),

a2=%ﬂHﬂUH,

ay=—LDYr0)],

3l (2.5)
nz—(_l)nD”“l[r”(t)] ,
n!
where D"=d"/dt". Then Eq. (2.3) becomes
— < (—=1)" n—Ir.n
[t]=t+ 3 —‘;‘—‘D [rM(e)] . (2.6)
n=1 c"n!

Equation (2.6) is the correct solution to Eq. (2.1). Of
course, this has not been rigorously demonstrated, only
suggested. The structure of the general term written in
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Egs. (2.5) has not been proven, and if it were, proof of
series convergence would still be lacking. Furthermore,
Eq. (2.6) itself is not all that is desired. It will be con-
venient to evaluate certain functions at retarded time [¢],
and to have present-time expressions for those evalua-
tions. All of these aims can be met by recognizing that
the sum in Eq. (2.6) has the structure of a Lagrange series
[2,6], pertaining to which the methods of analytic func-
tion theory will be found sufficient in providing an
elegant and rigorous proof of the equation, in establishing
the conditions of its convergence, and in developing
present-time formulation of those particular retarded-
time functions needed for electromagnetic and other
field-theoretic applications.

III. SOLUTION
OF THE RETARDED-TIME EQUATION

The following theorem and proof will be sufficient to
establish the paper’s instantaneous action-at-a-distance
field formulas.

A. An inversion theorem for analytic functions

Let the functions f(z) and g(z) be regular in a simply
connected region containing a simple closed path C, and
let z, be an interior point of the open subregion bounded
by C. Then there exists a neighborhood of infinity K such
that for o belonging to K, the regular function

F(z)=z—z4—f(z)/0 (3.1a)

’

has one and only one zero, z=z’, in the closed region
bounded by C. This zero is of multiplicity one and is
given by

z'=z, D" f(z0)"] , (3.1b)
where D"=d" /dzo Furthermore,
® f'(zp)
g(z)= 3 —D" |g(zg) [1= T2 | £(zg)" | ,
n=00 n! o
(3.1¢)
or equivalently,
g(z")=gl(zy)+ 2 ————“D” '[g'(zo)f(z9)"], (3.1d)

n—lon

where primes on f and g indicate ordinary differentiation.

The series indicated in Egs. (3.1b)-(3.1d) are conver-
gent for any o in K. The region K is determined by
|o|> R, where R is the least upper bound of the real set
|f(2)/(z—z4)|, mapped from points z of C.

Proof- Since f(z) is regular in the closed region bound-
ed by C, it follows [7] that f(z) attains its maximum
modulus M on C. Also, if z lies on C then, because z, is
interior to C, |z—z,| attains its greatest lower bound,
AF0,0on C. Let Q(z)=f(z)/(z—z,). Then for all points
on C, |Q(z)| <M /A and |Q(z)| is bounded above.

Now let R be the least upper bound of the real number
set formed from |Q(z)| when z lies on C. This least upper
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bound is attained by at least one point on C and, there-
fore, |Q(z)] <R for all zon C. Let o be a complex num-
ber arbitrarily chosen from the neighborhood of infinity

defined by K ={o||o| >R }. It follows that
S ic 2 (3.2)
o(z—zp)

for all points on C.

By Rouché’s theorem [8], the satisfaction of inequality
(3.2) guarantees that the function defined by Eq. (3.1a)
possesses one and only one zero, z’, of multiplicity one,
within the region bounded by C. Furthermore, there are
no zeros of F(z) on C, or else condition (3.2) is violated.

Because of the regularity of F(z) at z’, the zero there
may be factored in the form

F(z)=(z—z')G(z) , (3.3)
where G(z) has neither zeros nor poles in the closed re-
gion bounded by C. Because G(z) has no zeros or poles
in this region, the function G'(z)/G(z) is regular there.
That fact may then be utilized to establish the series ex-
pansions represented by Egs. (3.1b)-(3.1d).

Using Cauchy’s integral formula and theorem there
follows

= 8(z)
§(z")= 21 lfcz—z’dz
1 G'(z)
=548 | TG |4
__1 F'(z)
=51 e )dz [by (3.3)]
__1 1—f'(z)/o
o fcg(Z)__—"z—zo—f(z)/a dz [by (3.1a)]
-1 regz  1=f(2)/0
2mivez—zy 1—f(2)/0(z—2z,)
_1 r gz .. < fiz) |
21Tich—ZO[1 f(2)70] é o(z—zq) dz
[by (3.2)] .

The integrations may be carried out term by term be-
cause of the uniform convergence of the series for all
points zon C. There then follows:

o

gz)[1—f"' (z)/cr][f(z)/a]”
2 277'1 f

=’y (z —2z, )n+1

glz")=

:2 1 D"
n—Oan

g(zy)

Sflzg)"

Sf'(zp)
o

which is result (3.1c). Expanding terms of the above ex-
pression, there also follows:



4014

gz)=3

n=0

D"[g(29)f(2)"]

"n!

1
n+1)

i 1
+ _
Eo o Tln+1)
o 1

=g(z9)+ 3 — —D" " '[g'(z9)f(20)"],
n=10 n!

_2 0n+l( Dn+1[g(zo)f(zo)n+1]
n=0

Dn[gr(zo)f(zo)n +1]

Fg(t')= f_w g(t')e ~ivdt

:foo g(t') \H— r(ct ) ]eviw[t'+r(t')/c]dt:

=[" g

—

AL ]e—iw[t+r(t)/c]dt
¢

[ e (_l)n

n=o c"n!

=:7]§ (D gy g(t)ll+”‘) r”(t)H
n=0 c"n! ¢

=:7‘§ ————(—l)nD”[g(t) l1+ F2) }r"(l)] ] :
n=o c"n! c

so that
g1D=3 S e+ ey,
n=o c"n!

in agreement with Eq. (3.1c). However, Eq. (3.1c) is more
general, in that it admits complex time values and so al-
lows mathematical investigations to proceed into the
complex plane, where series convergence criteria may be
readily established, as will be shown in Sec. III C below,
and where multiple roots of the retarded-time equation
may be treated, as in Sec. III D.

B. Retarded-time series solution

To make use of the inversion theorem, first observe
that solving Eq. (2.1) is equivalent to finding a zero,
z'=[t], of the function

F(z)=z—t+r(z)/c . (3.4)

This will be in the form of Eq. (3.1a) with the associations

zo=t, f=r, and o=—c . (3.5)

The inversion theorem may then be applied if one as-
sumes that the function r(z) is regular in a region con-
taining the real (time) axis or an appropriate portion
thereof.

Making the above associations and assumption, Eq.
(3.1b) translates precisely into Eq. (2.6) of the preceding

R. A. VILLECCO 48

which is result (3.1d). Letting g(z)=z in Eq. (3.1d), result
(3.1b) follows, and the theorem is proved.

It should be noted that virtually the same results may
be obtained by the much simpler and more direct method
of taking the Fourier transform of the retarded function
g(t’), where t'=[t]. In fact, with F designating the
Fourier transform and with Eq. (2.1) written in the form

t=t'+r(t')/c,

one readily obtains

(iw)"r'(t) le —iotgy

f

section. It is noteworthy that the inversion theorem
guarantees that the series of Eq. (2.6) always converges if
c is “large enough”; that is, if it is an element of the set
K, previously defined. Therefore, as a practical matter,
one may always assume beforehand that ¢ is ‘“large
enough” and that Eq. (2.6) is therefore valid. If any
divergence of the series occurs as c¢ is reduced to its
correct speed-of-light value, then one may minimally con-
clude that ¢ was not “large enough” to present the prob-
lem in convergent series form. Nevertheless, it may
sometimes be possible to cast a presenting series with a ¢
not “large enough” into another form-—effectively, an
analytic continuation—for which the correct speed-of-
light value for c is adequate in establishing a valid con-
vergent series or closed form solution. An example of
such analytic continuation to a closed form will be
presented in Sec. V.

In the event that analytic continuation of a Lagrange
series to another convergent series or to a closed form is
not feasible, detailed testing of the validity of inequality
(3.2) may be performed, with due cognizance taken, in
the construction of an integration contour, of all branch
points and poles of the function r(z). Such testing is ap-
propriate if convergence of the Lagrange series is to be
assured when c realizes its correct speed-of-light value. It
is also appropriate in the estimation of errors when trun-
cating the series. A brief example of such contour testing
will be presented at the end of Sec. V. Other than this,
examples of contour testing will not be included in this
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paper, since the subject of series convergence by means of
contour testing can become rather extensive in its own
right.

As an alternative to contour testing, the Lagrange
series may be directly tested for convergence as given,
whenever this proves more convenient. Standard series
convergence tests, such as the ratio or root test—or
series comparison tests—may then be applied, whenever
feasible.

C. Strength of Lagrange series convergence

In deriving the retarded-time expansions in Sec. IIT A,
use was made of a contour integral which, in general
form, may be expressed

1 ¢(z)

2m7i Ye (Z_zo)n+p+1

f(z)

o

dz

— ___1___ n+p n

o"n+p )!D [#(z0)f (29)"] ,
where D =d /dz,, ¢(z) is some regular function on and
within the contour C, and the equality results from apply-
ing Cauchy’s integral formula. It has already been stated
in Sec. IIT A that the regularity of the function f(z) on
and within C implies a bound, M, of its modulus on C,
and that |z —z,| is bounded below by A. Since ¢(z) is as-
sumed regular in the same region, it likewise has a modu-
lar bound, B, on C. Assuming that contour C is
rectifiable and of length T, it follows [7] that the modulus
of the left number of Eq. (3.6) is bounded above by
TBM"/27|o|"A"TPt1 The right number of Eq. (3.6) is
then also so bounded, so that

(3.6)

1
a(n+p)

M

Tomar Tl | ol

D" B(z0)f(2)"] ‘ < 1B

(3.7)

Equation (3.7) can be useful in estimating series trunca-
tion errors, since from it there also follows

___—Dn P n
ngm TP [b(z0)f (29)"]
<_ TIBlo| M_ | 3
200l |A—M) | lo|r

which bounds the error due to truncation of the series
after the mth term (assuming series summation from O to
), provided M /|o|A<1. From Sec. III A, however,
with o selected from the set K,

f(z) M

<
olz—zy) |~ lo|r <1

(for z on C) . (3.9)

Therefore relation (3.9) [or relation (3.2)] not only
guarantees the existence of a retarded-time solution of
root multiplicity one and the convergence of all
retarded-time functional expansions, but it also deter-
mines the strength of series convergence through relation
(3.8) and bounds moduli of terms of the series through re-
lation (3.7).
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D. Multiple roots

In the event that the retarded-time equation possesses
multiple roots and it is known, for a given o, that the as-
sociated Lagrange series converges, then to which of the
multiple roots does it converge? The question implicitly
assumes a lack of knowledge of the contours which
guarantee convergence, for if any were known, the appli-
cable root would be constrained to lie within its boun-
daries and thereby be isolated and identified.

The above question will be answered for the special
case (relevant to physical applications) in which the asso-
ciations given by Egs. (3.5) apply. Since r is assumed ana-
Iytic and r(¢) represents spatial separation at (real) time ¢,
it follows from the reflection principle of analytic func-
tion theory [9] that, with % indicating complex conjuga-
tion,

[7(2)]*=r(z*). (3.10)
Then,

rzh) || @' ) r@ | gy

c(z*—t) [e(z—1)]* c(z—1t)

so that, if the convergence requirement [Eq. (3.2) or (3.9)]
is satisfied for any z, it is also satisfied for z*, the conju-
gated complex time point.

Since t is real, any simple contour which surrounds
point (z,0) must intersect the real axis at least once on ei-
ther side of this point. The discussion will be restricted
to those contours which intersect the real axis precisely
once on either side of (¢,0). Let it be assumed that one
such contour guarantees convergence of the Lagrange
series. Regardless of its initial shape, it may be replaced
by a contour which is symmetric about the real time axis
by reason of Eq. (3.11) (by mirror imaging either the
upper or lower half). By construction, the resulting con-
tour also guarantees convergence of the Lagrange series.
In addition, the interior of the symmetric contour fully
contains the real axis between the contour intersection
points with the real axis.

The interior of the symmetric contour can contain no
complex roots, for when ¢ is real, the retarded-time equa-
tion

z=t—r(z)/c (3.12)

is also satisfied by z* [by Eq. (3.10)] and the interior can-
not contain a double root, by reason of Rouché’s theorem
(within the context of the inversion theorem). Therefore
the interior of the contour must contain precisely one
real root, less than ¢ [by reason of Eq. (3.12)], and this
must be the real root which lies closest to (¢,0), for if it
were not, then at least two (retarded) roots would again
be contained within the contour, in violation of the inver-
sion (Rouché) theorem.

Therefore, under the conditions imposed above (which
should apply to all cases of physical interest), the
Lagrange series expansion for the retarded time will al-
ways converge to that real root which is less than and
nearest to the present time t, regardless of the number of
distinct roots which satisfy the retarded-time equation.
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As an example, consider a uniformly accelerated parti-
cle whose coordinates are given by (%atZ,O,O). If the ori-
gin is the field (observation) point, then r(z)=1lat* and
Eq. (3.12) may be readily solved to yield the retarded
times

t,=17(V1+2t/7—1) (3.13a)

and
t,=—7(V1+2t/7+1), (3.13b)

where 7=c /a.
According to the preceding proof, the Lagrange series
expansion for the retarded time, Eq. (2.6), must result in

[t]=¢, . (3.14)
To show this, substitute r(z) into Eq. (2.6) so that
U s DLy I T
t+> ——D —at
n=1 C n‘ 2
=t+ i L 1 nDn~1 2n
o ! 27'
+1
SPRP S e’,3 B (.19
< nln+1) 27 )

The ratio test shows the above series to be convergent
for |t| < 7] /2.

For |x| <1, the following binomial expansion is easily
verified:

1 (—1)"(2n) Xt

Vi+x =1+=x+
2 222"+1n'(n+1)'

(3.16)

Comparing Egs. (3.15) and (3.16) (with x=2t/7), Eq
(3.14) results, as was to be shown.

For the example chosen, if @ >0, the particle de-
celerates to the spatial origin during negative times and
accelerates from the origin during positive times, arriving
at the origin at t=0. The retarded times given by 7, in
Eq. (3.13a) are physically meaningful so long as
t 2 —7/2. The associated Lagrange series, however, does
not converge for large positive times. The right member
of Eq. (3.13a) therefore represents the appropriate analyt-
ic continuation of the associated Lagrange series for
times ¢ > 7/2. Notice that if ¢ were adjustable, so that as
¢— o, T— o, then the series could be made to converge
for any time ¢ in accordance with the definition of the re-
gion K, defined by the inversion theorem.

The root ¢,, not selected by the convergent Lagrange
series, is nonphysical, since the velocity of the particle at
time ¢, is given by

v=at,=—c(V1+2t/7+1)< —c . (3.17)

If the source particle could travel faster than the speed of
the signals it emits, root #, might then be meaningful.
However, the present paper deals exclusively with
charged particles in vacuo, so this root must be excluded
from physical consideration.
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IV. ACTION-AT-A-DISTANCE
INSTANTANEOUS POTENTIALS AND FIELDS

The classical Liénard-Wiechert potentials, expressed in
mks units, are given by

1

V=71 [ I+[71/¢) @b
and
A(r)=ﬂ——g—- , 42)
T [r][(1+[F]/c)
where
r=r)=|rp—r,(0)|, [r1=r(z])

[F1=#([t]), v,=t,,
and
[v,1=v,([])

Using Eq. (.1c) with z'=[t], g(z')=gq/4me,[r](1
+[#]/c), and the association given by relations (3.5),
there results

(=1)"

vit)y=-—2— DM(rm 1) 4.3)
477'60 nz() c"n!
and, similarly,
Bod 2 (—1)" _
A(t)= n n—1 .
(¢) . n§0 ol D*v,r ), (4.4)

where D"=d"/dt". Equations (4.3) and (4.4) are the
Lagrange series representations of the electromagnetic
scalar and vector potentials—taken under a Lorentz
gauge—which this paper wished to establish for the elec-
tromagnetic application of its material. [The Lorentz
gauge condition is implicit in the expressions for the po-
tentials given by Egs. (4.1) and (4.2).] The series are al-
ways convergent if ¢ is “large enough,” as discussed ear-
lier.

While Eq. (4.4), as it stands, has an electromagnetic in-
terpretation, it is not restricted to electromagnetic appli-
cations, since it is, in fact, a solution of Eq. (1.8) with the
substitutions s —(pog /4m)v,(¢) and ¢— A. Since v,(¢)
can be an arbitrary function, Eq. (1.11) is therefore
justified and validated. In addition, the functions ¢ and s
need not be scalars, as is clearly demonstrated by the
preceding substitutions.

The requirement for regularity in the functions defined
by the right members of Egs. (4.1) and (4.2) is met by ex-
cluding all physical situations in which »=0 or #= —c.
Since these singular cases are of little physical
significance, the functions defined by Egs. (4.1) and (4.2)
may be considered analytically continuable from the real
time axis in all circumstances; and, therefore, series (4.3)
and(4.4) may be considered valid representations of the
electromagnetic potentials in all circumstances in which
the presenting series are convergent.

The electric and magnetic fields are given by
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JA
E VeV a1
All derivatives in Egs. (4.5) commute with D", because
spatial differentiation is to be carried out with respect to
the coordinates of ry only, as is indicated by the operator
subscripting. Carrying out the operations indicated
above, there results

En=—-21-3 =)

417'60 n=0 C "n!

and B=V X A . (4.5)

X (n—l)r"'3r+—12—D(r"_1vp)
c
4.6)
and
B(n)=L"2 3 D=1 paescy pne3), @.7)
4T = c'n! P

with r=rp—r,(7). The structures of Egs. (4.6) and (4.7)
are direct translations of the operations indicated in Egs.
(4.5).

That these equations are equivalent to the classical
retarded-time formulations for the fields will now be
shown, beginning with the presentation of a general pro-
cedure for translating any classical retarded-time expres-
sion into a present-time formulation.

Using the customary bracket notation—but with a
prime on the bracket—to indicate retarded-time evalua-
tion, if some function G is to be evaluated at a retarded
time, then Eq. (3.1c), with 0= —c and f =r, may be ex-
pressed as

o0 (__l)n

[G)=3 ~— -D"Gxr", (4.8)
n=0 .
where
x=1+#t)/c , 4.9)
or, using Eq. (3.1d),
[GT=G(+ 3 = pr-1(Gpm (4.10)
n=1 € "n!

Equations (4.8) and (4.10), with the definition provided
by (4.9), comprise the means for generating present-time
expressions (substituting left to right), or generating
retarded-time expressions (proceeding right to left).

Because of the repetition of its occurrence, it will be
convenient to introduce the differential operator,

(=1)

D, =——
c¢"n!

——FD". (4.11)
It will also be found convenient to adopt the convention
of dropping the summation sign when summation on an
index proceeds from O to <, provided the index is repeat-
ed within the summand. If summation proceeds from i to
infinity, when {50, then the index i will be additionally
subscripted to the lower right of the symbol D,, which
then becomes D, ;. Then Egs. (4.8) and (4.10) may be
written, respectively,
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[G]'=D,(Gyr") (4.12)
and
[G]'=G(t)-——1—Dn_,_1(Gr") . (4.13)

Using the above notation, it may be shown that, for
any function g,

D,,(ngr"*l)=~%1),, (4.14)

D&
X

(see the Appendix for proof). A symbol D without sub-

script or superscript will always stand for the basic

operator d /dt. For low-order time derivatives, the cus-

tomary dot notation will also be used, as in Eq. (4.13).
The following relation also holds:

1.
D[G]'=|=G]| , 4.1
] P (4.15)
since
_d_di)r d _ 1 d _|1. ]|
D i & duT L dud [XD , (4.16)

where, in computing the time derivative, use has been
made of the retarded-time equation,

[t]'=t—%r([t]’) (4.17)
Equation (4.6) may now be written
E=—L-p, n|-= r”_1+£r"+lD[—£r"’ ,
4reg r? c r
(4.18)
with
v
B=-L and fi==*. (4.19)
c r
But,
D, n -1 r""l}‘Dn[lD £ r"l
r c Xr
1 |a |l
=|—=—D|-||, (4.20)
cx Xxr
by applying Egs. (4.14) and (4.12), in succession.
Also,
D, | |5 r=15 (4.21)
r Xr
by Eq. (4.12). Finally,
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[
[
*x

Dli _B
c xr
Apl-B ||, @
cx xr

by commutativity of D and D,,, and applying Eqgs. (4.12)
and (4.15) in succession.
Combining results (4.20)—(4.22) into Eq. (4.18), there
follows
-8
Xxr

g=_4 .n_2+L
xre <X

(4.23)
477'60

Equation (4.23) is, of course, one of the classical formu-
lations for the electric field, expressed in retarded-time
format [10]. Proceeding from Eq. (4.23) to Eq. (4.6) sim-
ply involves reversing the above steps.

In a similar way, Eq. (4.7) may be written

cB=-1 " axB r”'1+~——BX2n r" (4.24)
41e, r r
But
Dn n an rn—l]: R *Dﬁxnr”
r ¢ Xxr
_ |1 pxa }
cx Xr
using Eqgs. (4.14) and (4.12), in succession. Also,
p, |BXB,n| = | BX1 (4.25)
r Xxr
using Eq. (4.12). Therefore Eq. (4.24) becomes
B= q ﬁzﬂ_*__l_D BXxXn , (4.26)
dmey | xr cx Xr

which is one of the classical formulations for the magnet-
ic induction, expressed in retarded-time format [10].

It has thus been shown that Egs. (4.6) and (4.7) are
completely equivalent to the classical retarded-time ex-
pressions for the electromagnetic field. They are, howev-
er, expressed in present-time format. These equations
represent, therefore, one form of the instantaneous
action-at-a-distance solutions of Maxwell’s field equations
for a charged particle in motion. All of the information
contained in Maxwell’s field equations are also contained
in Egs. (4.6) and (4.7), but the latter equations con-
veniently and completely solve Maxwell’s equations,
without approximation, for every definable kinematic
circumstance—the requirement being, of course, that the
charged particle source kinematics be known. Determin-
ing those kinematics remains, however, a central problem
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of electrodynamic theory, just as it is when Maxwell’s
field equations are used as a basis for investigations.

Conversion between retarded-time expressions and
Lagrange series representations is now quite simple using
Egs. (4.12)-(4.16). Well-established results, such as

¢cB=[1]'XE, (4.27)

still hold in the new formulation and are rather simple to
demonstrate. The new formulation lends itself quite well,
however, to examining old formulations in new and sim-
ple ways. Examples will be presented in Sec. V1.

No mention has yet been made of the relativistic
correctness of the field expressions given by Egs. (4.6) and
(4.7) or of the potentials given by Egs. (4.3) and (4.4). The
assumed covariance of Maxwell’s equations assures this
correctness. However, it will be beneficial to present an
explicit validation of this claim, for in so doing, an exam-
ple may also be provided of the benefits achievable by
analytically continuing the Lagrange series solutions into
closed forms, for which the requirement that ¢ must be
“large enough” may be removed. In the next section this,
along with some other simple validating examples, are
presented.

V. VALIDATING EXAMPLES

The issue of validity is not genuine, given the correct-
ness of the mathematical procedures used to obtain the
Lagrange series representations of the potentials. Never-
theless, it is worthwhile to instill a sense of trust in the
use of new mechanisms by showing that more familiar re-
sults are obtainable from their use. Several familiar re-
sults will be offered.

Consider the specific representation of the series given
by Egs. (4.3) and (4.4):

_ q 1 1 . | SO
V=—"2— | =+ ——F———[FF+3F]+ - 5.1
4mey | 7 '202r 363[rr 1 ] G-
and
CBod |V, 1, 1 ... . .
A—? T~:vp+?[vpr+2vpr+vpr]— Tt l .
(5.2)

Notice that ¥V and A correctly reduce to the Liénard-
Wiechert potentials without time retardation as ¢ — 0.
Also, note that the classical static potentials, V' =gq /4meyr
and A =0, are obtained when all time derivatives of posi-
tion vanish. Finally, observe that if r=const,
V =gq /4meyr, as in the static case and, from Eq. (4.4),

Az bl S (=1 [r

)

n
D'v
dmr =, n!

p

c

= v =L
4ar F

_ MHoq r
c

Again, the resulting potentials are consistent with the
Liénard-Wiechert potentials for this special case.
The next example will compare the potentials obtained
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from applying the principles of special relativity to those
obtained from the Lagrange series representations. Eval-
uation of the Lagrange series expansion will additionally
provide an example of Lagrange series evaluation tech-
niques and will demonstrate analytic continuation to a
closed form representation. The case chosen will be that
of a charged particle moving with constant speed, v,
along the positive x axis of an inertial coordinate system.

Assume all clocks to be synchronized to ¢ =1,=0 at
x =x,=0. The subscripted variables refer to the “mov-
ing” particle system. Assume the field point to be located
in the x =0 plane of the “rest” system at a distance p
from the x axis. If the positive x axes of both systems are
superposed and like aligned, then the moving system will
assign orthogonal coordinates, —vt, and p, to the posi-
tion of the field point. Since the charged particle is at
rest in the moving frame, the moving frame assigns a dis-
tance V/p?+v?%t? from the particle to the field point.
Then, in its own perceived rest frame, the moving system
assigns the following potentials at the field point:
v,=——2—— and A,=0. (5.3)
i 417'60\/p2+02tp2 P

A Lorentz transformation of the four-vector in Egs.
(5.3) using the customary assignments,

B=v/c and y=1/V1-B, (5.4)
results in

V=yV, and A=y%VP(1,0,O). (5.5
Substituting the Lorentz time transformation,

t,=yt, (5.6)
into Eq. (5.5), there follows

QPR e 7

and

A=-"2V¥(1,0,0) . (5.8)

¢

In contrast to the above procedure, the Lagrange series
expansion, Eq. (4.3), may be evaluated in the iner-
tial rest frame by simply substituting the relation
r(t)=V p*+v2t? and reducing the resulting series expres-
sion. [Note that the requirement for functional regularity
in r(¢) is satisfied since it is always possible to contain the
real time axis in an open set not containing the imaginary
branch points t, ==+ip/v.] The procedure is not trivial,
however, and it depends upon the following two relation-
ships:

d*N —1_ [@QN—1N]?
m(l+x2)N l/z—mm (5.9)
and
1 _ & (2N)Y N
I . 5.10
VTax 2y (NPT 510
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The first is provable by induction and the second may be
verified by performing a binomial expansion in the neigh-
borhood of x =0. Equation (4.3) then becomes

y=—9_ < (=1)"d" L (P2 p22)n 12
dmey =y c"n! dt"
- 1 nd" 2V(n—1)/2
=—41_ 35 ~|-2 1+ |2
dregp 2, n! c | dt" p
n
__q < 1 v | d" 2(n—1)72
= — |-=| =0+ :
41eyp n§0 n! c l dx"( x) SR
with x =v ¢t /p. If nis odd, say n =2N +1, then
dn d2N+1
—(1+x3)r~D2= (1+x)¥=0, (5.12)

dx" dx2N+1

since the highest power occurring in the polynomial ex-
pression in x is 2N, and the (2N +1)th derivative will
cause this, and hence all other terms, to vanish. There-
fore let n =2N in Eq. (5.11) so that, with B=v /c,

o ﬁZN d 2N

— q 2\N—1/2
y= 1+
4mey p <, (2N deN( x5
__q & BN [eN—1mP?
dmey p N, 2N (1+x2)N+172
N
q i [QN—1)1]* | pB?
~ 4mey p \/1+ =, (2N 1+x2 |~
(5.13)
using Eq. (5.9). But it may be verified that
— 112 !
[@N—DU]2 _ 1 (2N} ’ (5.14)
(2N)! 4N (N1)?
so that Eq. (5.13) becomes
2 N
_ g 1 (2N B
4meop V1+x2 ¥ (N)? | 4(1+x2)
4meop V1+x2 V1—B2/(1+x2)
—_ 49 1 - q

dmeop V1—B+x?  4meV pr(1—BH)+v4?

(5.15)

using Eq. (5.10) and the definition of x.

Since v, is a constant vector of magnitude v in the x

direction, it factors out of Eq. (4.4), leaving the same

series as for V¥V except for the multiplier
Ho€oV, =(v /c 2.0,0). Hence,
A=-"27(1,0,0) . (5.16)

C2

The results arrived at in Eqgs. (5.15) and (5.16), using
the Lagrange series expansions for ¥ and A, agree pre-
cisely with the results given by Egs. (5.7) and (5.8), ob-
tained from relativistic arguments. The Lagrange series
expansions for the potentials are thus validated up to the
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level of application that has so far been considered. In
addition, they yield, vis-d-vis special relativity, relativisti-
cally correct results. The relativistic correctness of the
Lagrange series expansions for the fields and potentials is
assured, in any case, since, as was already mentioned,
they are exact solutions of Maxwell’s equations, which
themselves are taken to be covariant under the principle
of relativity.

Since the steps leading to Egs. (5.15) and (5.16) analyti-
cally continued the Lagrange series for the potentials into
closed forms which remained valid for o = —c¢, it was not
necessary to demonstrate the existence of a contour for
which Eq. (3.2) held when 0 = —c. In the event that ana-
lytic continuation were not to be performed, the existence
of a contour for which Eq. (3.2) holds when o=—c¢
would have to be demonstrated, or independent series
convergence tests would have to be applied, if series con-
vergence is to be assured.

That there exists at least one contour for which the
series converges is shown by constructing a circle about
the time origin with two branch cuts, one from each
branch point to the circle circumference, along the
respective imaginary time axes. In this case, it is
straightforward to show that as the circle radius becomes
infinite, the left member of relation (3.2) is bounded above
by B=v /c over the entire contour. Thus f is at least one
measure of the strength of convergence of the series, and
when B < 1, the series is guaranteed to converge.

VI. ALTERNATIVE FIELD FORMULATIONS
IN CLASSICAL ELECTROMAGNETICS

Whether the material developed thus far has any dis-
tinct advantage over existing formulations remains to be
seen. Whether new applications can be found for this
present approach to electromagnetics will depend to a
large extent upon the form into which it can be cast.
This section presents a set of formulations for the poten-
tials and fields which, it is hoped, will be found useful in
exploring this subject further. As might be guessed, more
material is omitted than is presented, but it is hoped that
what is presented will provide an adequate stimulus to
further investigation.

A. The potentials

The convention will be retained that any repeated in-
dex is to imply, unless otherwise indicated, summation on
that index from O to . Also, if in a defining relation-
ship, the index occurs in a symbol being defined, then no
summation of the index symbol will occur in the defining
expression, regardless of the frequency of its occurrence
in that expression. With these conventions understood,
define

A,=D,rmtn"1, (6.1)
where, as before,
_(=1)" 4am
Dm *WW . (6.2)

Then there immediately follows
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~1pp,
c

=(m+1)D,, ,, (6.2)
where D =d /dt, as before.
Also, in a straightforward manner, one may show that

1

_——DAn:Dm m+n~2).
c

(mr (6.3)
It will be useful to perform binomial expansions of cer-
tain expressions as follows: given f(m) and g as arbitrary
scalar or, where appropriate, vector functions, then
D, (fimg)=3 = pmisim
m SR8 2 c™"m!

m =0

0 __l)m m
= ' >
m=0 ¢"m! 2
o0 m
=2 2 —
m= On——OC (m—n)!
_ n
><( 1) Dr
c"n!

D, _,.f(m)D
0

D, _,f(m)D,g

n

=3 > D,ftm+n)D,g
n=0m=0
=D, fim+n)D,g .

=rm+1—

m Dm~nf(m)Dng

_l)m—n

D™ f(m)

I
Ms
ZE}

3
Il
o
x
Il

Il
Ms
Ms

I
o

n m

(6.4)

In particular, if f(m) ! then

Dm(grm+1—1):Dmrm+n+1—1Dng:A"+,Dng R (6.5)

that is, in Eq. (6.4) or (6.5), the expressions on the left
may be expanded in a series of terms which are linearly
dependent upon the derivatives of g.

In the above notation, using Eq. (6.5), formulas (4.3)
and (4.4) become

_ q9 —_9 m—1
t)= = D .
Vi) 41e, Ao 41e, m? 6.6
and
q
An=524,0,v,, 6.7)
respectively.

Note that for uniform source velocity, the standard re-
sult,

_ M4 _ 1
A-—;onp—-EVVp , (6.8)
follows immediately.
B. The fields

Linear expansions of the electric and magnetic fields
may be developed directly from Egs. (6.6) and (6.7) as fol-
lows:
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4me,

VeV=VrAd,

=D,,[(m—1)r" ’r]

=D, [(m+n—1r" "D, 1,
using Eq. (6.4); and

47€0 A _ 1 1
p —(,;Z?D( A4,D,v,)= —‘C—Z‘D( A,DD,r)

(6.9)

=%D[A,,(n+1)D,,+1r] [by (6.2)]

=—D, (mr" " 2)(n+1)D, ; ;1— A,(n +1)(n +2)D, 4,r [by (6.3) and (6.2")]

=—D, (mnr™ " 3D, r— A, _,(n—1)nD,r

=—D, [(m+n—1)nrm " 3ID,r [by (6.1)].

Therefore

—_4q
E=—"—E D,r,
4mey, " nt

where

E,=(n—1)D,[(m+n—1rm"*"73],

(6.10)

(6.11)

(6.12)

motion along the x axis and a field point in the x =0
plane a distance p from the x axis, procedures similar to
those detailed in Sec. V yield

1-p
E= q r,
4mey [pH1—pH)+v2? P2

(6.17)

Similarly,
4 41
——B=—-VX A=V yX(4,D,v,)
Bod  Hod PO
=(Vp4,)XD,v,
=D, [(m+n—1r"* " "3]XD,v,
=D, [(m+n+k—1)"*t"**731D, rXD,v, [by (6.4)].
Therefore
Koq
B=_4;Bk+nDerDan s (6.13)
where
B,=D,[(m+n—1)rm*"73], (6.14)

It is readily apparent from Egs. (6.12) and (6.14) that
E,=(n—1)B, . (6.15)

Equations (6.11) and (6.13) are the complete linear ex-
pansions of the electric field and magnetic induction in
terms of the vector components of the source motion ki-
nematics.

Equation (6.11) is interesting in that it has no pure ve-
locity component (n=1) under any circumstances. In
particular, for uniform velocity, it reduces to

E=—L-D [(1—m)r™ 3r. (6.16)

477'60
The pure radial (though nonradially symmetric) char-
acter of the E field is also apparent from Eq. (6.16).
The coefficient of r in Eq. (6.16) may be computed ex-
actly for the case of uniform source motion. For uniform

in agreement with the standard result.

The complex structure of the magnetic field—in terms
of underlying source particle kinematics—is evident
from Eq. (6.13). Every possible cross product combina-
tion is represented. In the case of uniform source particle
motion, Eq. (6.13) reduces to the (modified) Biot-Savart
Law,

Hoq _
B=;Dm[(1—m)rm v, Xr (6.18)
or, using Eq. (6.16),
B=—17VPXE , (6.19)
c

again, in agreement with the standard result.

The expression for the magnetic induction may be
presented in factored form using Eq.(4.27). Only [fi]’ re-
quires evaluation in that case, for which another method
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of developing expansions will be introduced.

Noting that [r]’=r([¢t]') and that [¢t]'=¢t—[r]/c,
where primed brackets indicate retarded-time evalua-
tions,

[r]'=r(t—[r]/c)

=[r]'"D,r (Taylor series expansion) , (6.20)

so that
D, | [14+2 4=t |=p pmin-1yLpp 27T
m c " ¢c " "m++n

_ ¥
=Dmrm+" l—(m +1)Dm+1m

m+n—1

— ¥
=D,,r" " "'—mD

=N,

n o

For n=0, m=1or n =1, m =0 Eq. (6.22) yields correct
results if the value for m is assigned first, followed by the
value for n, so that

1 17

r r c

and N,=1. (6.23)

The magnetic induction, in factored form, is then given
by

B=-1“[ﬁ]’XE
c

—_4q
4mesc

(N,,D,, r)X(E,D,r) . (6.24)
Yet another form [see Eq. (4.7)] for the magnetic in-
duction is possible if, in Eq. (6.13), the subscripts k and n
are absorbed using Eq. (6.4), so that
Hoq _
B=""D,[(m—Dr" 7 rxv,].
In the expansion of Eq. (6.25), the lowest-order (in 1/c)
term is clearly the classical Biot-Savart law, and the first-
order term is missing, just as it is for the electric field ex-
pansion, Eq. (6.11).
Finally, using Eq. (6.4), Eq. (6.25) may be fully expand-
ed to yield
_ Boq

(6.25)

B——4;T-Dm[(m +n—1r" " 31D, (rXv,)
Hoq
=EBnD,,(r><vp) ) (6.26)

a form which could have been derived directly from Eq.
(6.13) using the binomial expansion to collect derivatives.

The intimate relationship of the electric field to the
motion of the source and the magnetic field to the angu-
lar motion of the source (relative to the field point) is
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ﬁ
[A]=[r""'I'D,r
-p, lef rmErlID r by (4.12)]
—N,Dr, (6.21)
where
N, =(n—1p, L7 (6.22)

"m+n—1"

The proof of Eq. (6.22) is as follows:

m-+n

[by (6.2")]

" m+n—1

—

clearly displayed and distinguished in Egs. (6.11) and
(6.26).

That there can be notational advantages gained in re-
taining retarded-time representations is shown by
evaluating B for a uniform velocity source particle. In
this case, the Taylor expansion for [fi]' [Eq. (6.20)] yields

T v

A= +-£ 6.27
R (627
while E is given by Eq. (6.17), so that
N Hod 1—p>
=—[A]XE=— Xr ,
B=[n] 4 [p2(1*32)+v2t2]3/2v” r

(6.28)

again, in agreement with the standard results. Note that
the last result also follows—trivially—from Egs. (6.17)
and (6.19).

VII. ADVANCED POTENTIALS

It is well known [11] that the complete mathematical
solution of any inhomogeneous wave equation is com-
posed of both retarded- and advanced-time functional
representations. Retarded-time representations have
been discussed up to this point, whereas advanced-time
representations have not. An advanced-time functional
representation may be formally defined as any function
evaluated at an advanced time [¢]", determined by the
equation

[¢)'=t+r([t]")/c, (7.1)
where
r([t]")=|rp—rp([t]”)[ . (7.2)

The use of advanced-time solutions to wave equations
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admits no simple physical interpretation, since, with
r>0, Eq. (7.1) shows that [¢]”">t. Therefore [?]" is
some future time with respect to the present time ¢, and
one’s customary sense of causality—cause preceding
effect—is violated. Despite the failure to comfortably in-
terpret the meaning of such solutions, they nevertheless
exist mathematically, and one becomes hard pressed to
exclude them based upon interpretive failure alone. In-
terpretive failure becomes all the more moot, in any case,
when both retarded and advanced solutions are cast into
a present-time formulation, for then only the present-
time state of the source particle motion is involved, and
the need for a physical interpretation (involving past or
future events) is somewhat obviated. Therefore it would
seem prudent to include both types of solutions in the
construction of fields, while relying on theoretical and ex-
perimental consequences to discriminate the mix.

It is felt by some (for example, Panofsky and Phillips
[11]) that only the retarded solutions are experientially
valid in a distant field approximation, but that both solu-
tions may find applicability otherwise. Others argue that
the advanced-time solutions have no physical or logical
underpinning whatsoever and that one may therefore dis-
card them altogether. Such a conclusion is explicit or im-
plicit in the program of many undergraduate and gradu-
ate textbooks in common use (for example, Jackson [10],
Morse and Feshbach [12], Corson and Lorrain [13],
Smythe [14]). Others (for example, Stratton [15]) caution
against the application of “logical” causality principles in
discarding advanced-time solutions but nevertheless de-
velop an exclusively retarded action theory based on its
presumed conformity to physical data. This seems wise
but raises the question of whether a mix of retarded- and
advanced-time solutions could not conform to physical
data as well as the retarded solutions alone. This paper
makes no preemptive judgment, one way or the other. It
supports (along with Synge [16]) the inclusion of both
solutions since both are mathematically present. That
they may not be freely joined in linear combination, how-
ever, will be shown below.

It will be found in the treatment that follows that the
experimental measurement of a single parameter, called
the (causality) mix parameter, can decide the issue of
solution inclusion for charged particles in motion. That
is, the experimental measurement of a single number can
decide in favor of retarded solutions, advanced solutions,
or a mixture of both solutions. This parameter will be
developed after first describing how to obtain advanced-
time solutions from the material thus far presented.

A. Advanced-time formulations

Noting that the only mathematical difference between
Egs. (7.1) and (7.2) above and the corresponding equa-
tions in Sec. II is the substitution of —c¢ for ¢, it follows
that all of the results of the preceding sections, with —c¢
replacing ¢, should yield all of the relevant advanced-time
field representations. That this is true is assured by not-
ing that the validity of Eq. (3.2) is independent of the
algebraic sign of o. That is, a contour which yields a
convergent retarded-time Lagrange series by virtue of the
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satisfaction of Eq. (3.1) along the contour will also yield,
along the same contour, a convergent advanced-time
Lagrange series with the substitution of —c¢ for ¢ in that
series. Thus almost everything that has been developed
up to this point applies equally well to advanced-time for-
mulations, with only a change in sign of the speed-of-
light parameter c.

B. Mixed potentials and the causality parameter

Assuming ¥, and A, to be retarded potentials and V,
and A, to be advanced potentials, there follows that if a;
and a, are scalar parameters for which

V=a,V,+a,V, , (7.3)
then
(o)t a,)
O3V =ay0bV, + a3V, = —— 2P =P
€o €o

provided
(7.4)

That is, if Eq. (7.4) is satisfied, then the potential defined
by Eq. (7.3) satisfies the same inhomogeneous wave equa-
tion that is satisfied by the individual retarded and ad-
vanced potentials.

If now the Lorentz gauge condition is to be satisfied,
namely,

a;ta,=1.

1
1av_,
c ot
then it is easy to demonstrate that an associated vector
potential, comprised of a linear combination of retarded
and advanced components, must be given by

A=a,A,taA, .

Ve A+ (7.5)

(7.6)

Assuming Eq. (7.4) and (having already adopted) the
Lorentz gauge condition, it follows that the scalar poten-
tial defined by Egs. (7.3) and (7.4) represent the most gen-
eral solution of the inhomogeneous wave equation for
point sources. But V,(c)=V,(—c) by the discussion in
Sec. IIT A, so that, using Egs. (6.6), there follows (retain-
ing the summation convention on repeated indices), for a
point charged particle,

g u(—1)"+a

= mym —1
477'60 c™m!
= q 1 2m, 2m —1
4mey | c¥™(2m )
+a- 1 D2m+1,2m
2™l am+1)
=Vp+aVy, (7.7)
where
a=a,—a, (7.8)

is some undetermined parameter of the general expan-
sion.
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The partial potential expansions,

__q 1 2m,2m —1

Vy,= —_— 7.9
D 4wey c2m(2m ) (7.92)
and
1
V., = q9 2m+1..2m , 7.9b
M amey 2 (2m + 1) ’ (7.90)

will be referred to as dominant and minor scalar poten-
tials, for expository convenience. The terminology is also
suggestive of the relative importance of the two series at
particle velocities much less than the speed of light.

In a similar way, Eq. (7.6) represents the most general
solution (under Lorentz gauge coupling) of the inhomo-
geneous wave equation for the vector potential. But

A, (c)=A,(—c), so that, if Eq. (4.4) is used, there fol-
lows
_ Mg (1)t m m—1
A= o e D (vpr )
Hod 1 2m 2m—1
= |— (v r )
47 | cPm(2m ) P
1 2m +1 2m
+ag———D" " (v ™)
C e 1) ’
=Apt+talA, . (7.10)
The partial potential expansions,
ADzﬂ’i——l—Dz'"(vprz'"—‘) (7.11a)

4 c™2m)
and

_ Moq 1

AV e P om0

D +l(vprz’") , (7.11b)

may similarly be referred to as dominant and minor vec-
tor potentials. i

The parameter a may be appropriately termed a
(causality) mix parameter since, if it assumes a value in
the range of values [ —1,1], it determines the mix or
“weight” accorded the retarded and advanced potential
solutions in forming the composite solution for the poten-
tials. For example, if a= —1, the potentials consist en-
tirely of the retarded-time component, with no
advanced-time component. The situation is reversed if
a=1. If a=0, equal “weights” of both solutions occur.
If a falls outside the range [ —1,1], then at least one of
the set {a;,a,} is negative, and the simple “weighted
mix”’ interpretation is lost.

The potential of Eq. (7.7) may be termed a mixed po-
tential by reason of the presence of the parameter a. It is
apparent that, unless this parameter’s value is fixed in na-
ture, the potential of a charged particle may not be
unique. It is also clear that a claim that advanced poten-
tials are physically or logically untenable—and are there-
fore to be discarded—is equivalent to the assignment
a=—1. But does nature permit this assignment and
hence the claim? It might be based upon both an anthro-
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pomorphic need for ‘“‘common sense” understanding and
justification, and a pragmatic need to assign a unique po-
tential to charged particle processes for the sake of intel-
lectual progress. The central question, however, begged
by the presence of the parameter a in Egs. (7.7) or (7.10),
is really this: can speculation as to its nature and value
be replaced with experimentation?

Noting that the first nonvanishing term of the a bear-
ing (minor) series is of order 1/c3, one reasonably con-
cludes that a precise measurement of charged particle
fields at relativistic speeds would necessarily be involved.
However, speeds near the speed of light are not enough.
Significant accelerations must also be provided. To see
this, recall from the considerations leading up to Egs.
(5.12) that all odd derivative terms of the Lagrange series
expansion for the scalar potential vanished under arbi-
trary constant velocity source particle motion. These are
precisely the terms comprising the minor potential series
given in Egs. (7.7) and (7.9b). The minor series multiply-
ing a in Eq. (7.7) therefore always vanishes for constant
velocity source particle motion, and no constant source
particle velocity experiment can then reveal the magni-
tude of a. [a cannot, of course, be determined from the
vector potential expansion either, by virtue of Eq. (5.16).]
Thus acceleration is required. It must be large, as must
be the velocity, in order to overcome the 1/¢3
dominance—else the experiment must be reasonably pre-
cise.

Given that experiments can be performed to estimate
the value of «a, they should be sufficiently varied to
discriminate whether a is fixed or, in some fashion,
dependent upon experimental conditions. If the latter
case is true, then charged particle electromagnetics (and
consequently, electrodynamics) may suffer with respect to
the present (Maxwellian) theory of field generation, since
the uniqueness of the elementary potential expansions
would then be lost. If, on the other hand, it results that
the a is experimentally fixed, then the true nature of
causality (and perhaps other processes) will have been re-
vealed (though, perhaps, still not fully understood), and
Maxwellian theory will have been augmented with anoth-
er empirical fact.

No specific experimental procedure will be addressed
in this paper, because of its limited scope. It appears
worth the investment, however, in the design of any ex-
periment, to attempt a quite rigorous—if not exact—
evaluation of the dominant and minor series expansions
presented in Egs. (7.9) and (7.11) and then to derive the
electric and magnetic fields (where appropriate) from the
potentials so determined. A reasonably exact experimen-
tal procedure from that point on could well reveal the
true nature of causality in the charged particle regime.

If any argument is to be advanced concerning the value
of a, assuming it is a fixed value, then one would be hard
pressed to argue any value other than a=0, since the as-
sumed complete knowledge of the present-time state of
the source particle motion weights equally in terms of
knowledge of its past and present kinematic behavior. If
a fixed value for a were to be anticipated, then =0 ap-
pears to be a viable candidate, even though elementary
causality is violated, because past and future events are
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seen here to equally affect the present event.

The case for a=0 is additionally bolstered by the fact
that V=V, for constant velocity charged particles. If
a##0, the transition between two different states of uni-
form velocity via an intermediate state of acceleration re-
sults in a type of discontinuity in functional form; that is,
Vp—Vp+aVy—Vp during the transition. Though no
known law is violated in this process, there is a sense of
intrinsic continuity which is nevertheless violated. Ar-
gumentation along this line is difficult to pursue, howev-
er, and it may in the end result that there is nothing
whatsoever wrong with such process representation.

C. Some open questions concerning potentials and causality

All of the preceding discussion rests wholly upon the
assumption that, in electromagnetic interactions, the 1/r
term must appear in all potential expansions. It does so
uniquely if advanced potentials are discarded; that is, if
one of the linearly independent solutions is selectively ig-
nored. If both linearly independent solutions are initially
accorded equal importance, however, then the potential
representation

V=a,Vp+a,Vy (7.12)

is a more satisfactory resolution of the potential into
linearly independent terms, one of which carries the 1/7
potential dependence term, the other of which does not.
It is more satisfactory because V), contains all of the 1/r
dependence, prior to making any assumptions. When ad-
vanced potentials are discarded, for example, some 1/r
dependence is discarded as well.

Now if the claim holds that the 1/7 term must persist
in electromagnetic interactions, then the assignment
a;=1, a,=a returns to the preceding discussion, along
with the argument that a=0. That is, that ¥V}, is the
correct form of the potential when 1/7 dependence must
be present. But it may be argued that if one linearly in-
dependent component of the potential has physical
significance, then so should the other. That is, unless
strong experimental or theoretical prohibitions exist, one
must look at natural phenomena for the independent oc-
currence of the potential V,, as well. Can electromagnet-
ic interaction occur without a 1/r potential dependence?
If so, is it always so, or does there occur a transition from
Vp dependence to V), dependence, for example, when
moving from certain free states to certain bound states?
Obviously, these questions cannot be answered easily and
will rely heavily upon experimental or further theoretical
investigation.

Let sight not be lost of the fact that all undertakings in
this area of investigation directly impact the concept of
causality and one’s understanding of it. Should it result
that a7 —1, then one’s conventional understanding of
the universe must suffer a reconstruction whose end is far
from clear. In particular, if it results that =0, then the
linearly independent solution V,, must be sought in na-
ture, or an understanding of why it does not occur must
be sought. If a0 and a7 —1, then even greater expla-
natory difficulties will exist and the very equations which
generated these solutions would likely be called into ques-
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tion. It might result, for example, that the second-order
character of the wave equation is fatally insufficient to
guarantee a unique solution for the potentials and an ac-
ceptable first-order theory must then be sought; or inac-
curacies may exist in the mathematical representation of
the source function. In any case, which difficulty will
manifest itself and which set of answers must be sought
must properly await the impartial judgment of exper-
imentation.

Until a resolution of the above questions is achieved, it
should be borne in mind that all of the field formulas
developed in preceding sections are valid for convention-
al (retarded-time) causality only. Should a7 —1, then all
of the preceding formulas must be recast in the manner of
the mixed potentials presented in this section. Without
an experimental knowledge of a or compelling theoretical
considerations, it is the judgment of this paper that the
exact nature of the electromagnetic (and other wave-
theoretic) potentials must be considered unknown.

VIII. SUMMARY

The Introduction to this paper addresses the relation-
ship of this paper’s contents to the modern wave-particle
duality concept for field quanta and clarifies the close re-
lationship that exists between solutions of Poisson’s and
d’Alembert’s equations with respect to action-at-a-
distance and propagating wave solution representations.
The paper also constructs, in terms of a Lagrange series
expansion, an analytic solution of the retarded-time equa-
tion, Eq. (2.1), by utilizing an inversion theorem based
upon analytic function theory, whose proof is presented
in Sec. III. The theorem allows the recasting of the
Liénard-Wiechert potentials from their retarded-time
representation to a present-time or instantaneous action-
at-a-distance representation, as given by Egs. (4.3) and
(4.4). By simple extension, instantaneous action-at-a-
distance solutions of the inhomogeneous wave equation
with point sources, Eq. (1.8), are shown to be given in all
cases by Eq. (1.11). Electric and magnetic fields are also
developed in an instantaneous action-at-a-distance format
in Sec. IV and are shown to be identical to classical
retarded-time formulations for the fields. Some examples
which validate the resulting equations are presented in
Sec. V. Also presented in Sec. V is a demonstration of
the relativistic correctness of the paper’s field formula-
tions. Section VI shows that by Lagrange series manipu-
lation, the electromagnetic fields and potentials can be
cast into various forms that may be useful for theoretical,
mathematical, and applied investigations. Section VII in-
troduces and discusses advanced potentials and their in-
stantaneous action-at-a-distance representations. Their
significance to field theories is addressed and the possibil-
ity is raised of performing experiments to determine if ad-
vanced (electromagnetic) potentials have phenomenologi-
cal reality. The necessity of performing such experiments
is also discussed, if the uniqueness of electromagnetic and
other wave-theoretic potentials is to be unambiguously
established. Equations necessary to perform such exper-
imentation are presented, but not reduced to explicit ex-
perimental detail. Throughout, only the topic of fields
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generated from the arbitrary motion of point source par-
ticles is addressed.
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APPENDIX

1. Representations of p’ in Eq. (1.6)

If the field point r; and source point r, are fixed, then,
with r=|rp—r1,/,

p(t")=plr,,t—r/c) [by (1.5)]
i (=1)7%" a7 p(r,,t)=p'(t) (Taylor series)
—o c¢"n! dt"
and
© ) dﬂ
-¢ 34 R,(rp,1) [by (1.4)],
oo c"'a! dt"
where

2(Tp,t f p(rg,)r”  dvg .
For particulate sources, where
p(rg,t)=md(r, —r,(1)),
there results

R, (rp,t)=m |rF—rp(t)1"_1 ,

=—mG 2 tdr

—r, ()" [by (1.4)],
= cn' dt"|rF I, | [by ( )]

and

© (—1)%" dn

2 o dt"a(r —r1,(2) .

p'(t)=m
2. Proof of Eq. (4.14)

Dn(ngr”_l)ZDn,l(ngr"_l)

= _%Dn—l,lD(grn_‘)

1 n

:—?DnD(gr )

—lDD( r")

. DD, (g

——1pl28 | [by(412)]
¢ lx
1 1 ’ i ’

=——|=D by (4.16)
< |XP| ¥ [by ]
c|lx |x

=—%Dn [D £ n| by (4.12)].
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